使用一些流行的深度神经网络模型,如CNN和RNN,以及它们在无线传感中的应用。还提出了一种复值神经网络,可以有效地完成基于无线特征的学习和推理。
CNN(Convolutional Neural Network)卷尺神经网络本节将提供一个工作示例,演示如何将CNN应用于无线传感。具体来说,我们使用商品Wi-Fi来识别六种人类手势。手势如图9所示。
我们在一个典型的教室中部署了一个Wi-Fi发射器和六个接收器,设备设置如图10所示。用户被要求在五个标记的位置和五个方向上执行手势。
我们从原始CSI信号中提取DFS,并将其馈送到CNN网络中。神经网络的架构如图11。
用于后续手写python进行转换参考
main
计算子载波波长
天线排列
linspace(5.8153e9, 5.8347e9, 57);创建一个等间隔的频率数组。linspace函数用于生成一个在指定区间内均匀分布的数值序列,起始频率5.8153GHz,终止频率5.8347GHz,生成的间隔数值57。
num2str 将数值转换为字符串
计算偏差
计算AoA估计
aoa_mat = naive_aoa(csi_src, antenna_loc, zeros(3, 1)); zeros(3,1)适用于RCO(射频链路偏移)的零向量,在这个例子里,RCO被假设为0
aoa_gt = [0; 0; 1]; 给定的地面真实AoA向量,假设实际AoA沿着z的单位向量
error = mean(acos(aoa_gt' * aoa_mat)); 里面先计算点积,得到余弦相似度,acos(cos(theta))就得到theta,两个向量之间的夹角,取平均,得到所有估计值的平均角度误差
TOF概念TOF
英文翻译中文
代码注解输入:
csidata csi...
公式推导
RSS:接收信号强度,计算公式:R=10lgp(p:接收端接收到的信息强度 / 发射端的信号强度)。一般是负值,-50dbm~0dbm则信号很好,理想状态下0。
RSSI:(MAC层信息)接收信号强度指示,人为处理得到的信号强度,RSS通过变换转为正值RSSI(无单位)。
CSI:(物理层信息)信号状态信息(通信链路的信道属性),描述信号在每条传输路径的衰弱因子:信号散射、环境衰弱、距离衰减等。
自由空间损耗模型——弗里斯传输公式
公式推导
以上两个推导过程结合来看
自由空间的路径损耗:RSS,是PL=10lg(Pt/Pr)
概念笔记
复现笔记基于WiFi的人体行为感知技术研究_朱旭.caj
总流程图
数据信息:3接收、3发射,30个子载波,采样率200Hz
数据预处理
从CSI分离出与呼吸相关的动态分量
(1)时频分析(2)相位差(3)相位比(4)共轭相乘
本论文采用CSI共轭相乘理论模型,结合MIMO技术,消除部分相位偏移。
滤除(中值滤波)
Monitor模式采取数据可能丢包,为使数据更准确。先进行线性插值,...
这篇主要是WIFI感知(包括CSI)相关知识的一个梳理
入门
软硬件平台:基础至少需要一个发送设备+一个接收设备,各设备2-3个外接天线。
CSI测量工具:Linux Ubuntu系统安装,Atheros CSI tool、Intel 5300 NIC CSI tool,Nexus 5(不同测量工具对网卡版本均有要求)
CSI处理
进阶
感知算法设计
感知系统可视化
案例实践
Widar 3.0 http://tns.thss.tsinghua.edu.cn/widar3.0/
Wi-Fi感知,顾名思义,就是利用Wi-Fi信号实现对周围环境以及环境中的人体、物体状态的感知。现有Wi-Fi感知方法主要通过分析从Wi-Fi信号采集到信道状态信息(Channel State Information,CSI)实现
Atheros CSI Tool官方网站
指引文件
开源地址
Intel 5300官方网站
Nexus 5官方网站
CSI基础处理CSI测量值解析出来为a+bj的复数形式
相关工作及代码
自我翻阅的helpone road
two Wifi Sensing CSDN
th...
数据集
这份数据集的内容包括第一列用户id,第二列商品id,第三列类别id(比如冰箱属于家电类),第四列用户行为类型(包括pv:浏览/fav:收藏/cart:加入购物车/buy:购买),第五列时间戳。
数据导入首先,使用Navicat将csv格式的数据集导入Mysql。由于数据集过大,这里仅导入前300w行数据,并以此进行分析。
数据处理
更改数据列名
123456alter table userbehavior change f1 user_id int, change f2 item_id int, change f3 category_id int, change f4 behavior_type varchar(5), change f5 time_stamp int;
查找空值
123456789select * from userbehavior where user_id is null or item_i...
查缺补漏
刷题
从第三行数据开始,只取一行12SELECT * FROM employees ORDER BY hire_date DESCLIMIT 1 OFFSET 2
左连接1234select last_name,first_name,dept_nofrom employees sleft join dept_emp don s.emp_no = d.emp_no
获取每个部门中当前员工薪水最高的相关信息,给出dept_no, emp_no以及其对应的salary,按照部门编号dept_no升序排列
12345678910SELECT d.dept_no, d.emp_no, s.salaryFROM dept_emp dJOIN salaries s ON d.emp_no = s.emp_noWHERE s.salary = ( SELECT MAX(s1.salary) FROM dept_emp d1 JOIN salaries s1 ON d1.emp_no = s1.emp_no WHERE d1.dept_no = d.dept...
Tableau下载地址
学生版认证–获取密钥
完成了,好激动!准备开始学习(Fighting)
数据库连接连接有多种连接的来源,可以供选择
当选择两个数据进行连接后,需要选择字段
提取方式
实时:每一次更新都需要导入数据
数据提取:存储到Tableau的数据库里面
筛选器:当数据较多,且已经明确了所要的数据时,可以提前在这筛选掉
保存方式
twb:不带数据,需要连接
twbx:内置数据
数据查看
性能和数据响应程度做取舍,都是需要成本的。
数据可视化数据变成图表的过程,就是数据映射到视觉图形的过程
数据:维度和度量
数值型【度量】:一般由数字组成,表示为图表的面积大小、条形长短、颜色深浅等可以量化的视觉元素
类别型【维度】:有限的类别数或可区分组数,表示为图表的颜色种类、图形位置、分类方式等视觉元素
【度量】映射图形,【维度】负责区分
数据可映射的数据类型:
位置
散点图主要有四种数据规律
长度
角度,例如饼状图
方向,例如折线图
形状
面积和体积
颜色和深浅
可视化字典
视觉图形的暗示排序清单
数据可视化领域的四大金刚:散点图、柱状图/条...
Excel
基础概念
对数据进行备份
右键——移动或复制——移到最后——创建副本——隐藏
需要显现的时候,右键任意sheet,取消隐藏
数据理解 ctrl + shift + L /* 全部筛选 */
UV与PV:去重与不去重
CPC:单次广告的成本
数据透视表筛选
插入切片器
透视表内的筛选
都可以进行筛选,区别是:切片器不只应用于透视表。
双击可以更改名称:
插入字段
函数sum函数新建窗口
冻结窗口
sum特殊 win + 上下左右 /* 任意分屏 */
中间加逗号可以分开来选。
sumif函数锁定
sumif sumif( 比对的数据行,标准,要的数据行)
sumifs sumifs( 要的数据行,对比的数据行1,标准1,对比数据行2,标准2,...)
环比与同比同比:上一年或者上一月环比:上一个相邻的
拆解日期
组合日期
如果前一个月没有那一天,就会返回第一天。跨年算的结果是正确的。
不要用Excel的日期格式去存储日期,要用字符串格式。
求每个月最后一天
条件判断符号要加双引号后面跟&
总结
subt...